SAMSUNG

Samsung 5G gNB AU, DU v19.A

Security Target

Version 1.4

November 2020

Document prepared by

www.lightshipsec.com

Document History

Version	Date	Author	Description
1.0	29 Sep 2020	L Turner	Release for certification.
1.1	2 Oct 2020	L Turner	TSS consistency update.
1.2	15 Oct 2020	L Turner	Update SSHC.
1.3	20 Oct 2020	G Nickel	Update CC Guide version
1.4	10 Nov 2020	G Nickel	Update AGD version reference

Table of Contents

1	Intro	duction	. 5
	1.1 1.2 1.3 1.4	Overview	. 5 . 5
2	TOE	Description	. 7
	2.1 2.2 2.3 2.4	Type	. 7 . 8
3	Secu	rity Problem Definition	11
	3.1 3.2 3.3	Threats	12
4	Secu	rity Objectives	14
5	Secu	rity Requirements	15
	5.1 5.2 5.3 5.4	Conventions	15 15
6	TOE	Summary Specification	29
	6.1 6.2 6.3 6.4 6.5 6.6 6.7	Security Audit	29 32 33 34 35
7	Ratio	onale	37
	7.1 7.2 7.3	Conformance Claim Rationale	37 37
Αı	nnex A:	Extended Components Definition	40
		List of Tables	
Ta Ta Ta Ta	able 2: N able 3: T able 4: C able 5: T able 6: T	valuation identifiers IAP Technical Decisions erminology AVP Certificates OE models hreats	. 5 . 6 . 9 . 9
Ta Ta	Table 7: Assumptions12Table 8: Organizational Security Policies13Table 9: Security Objectives for the Operational Environment14Table 10: Summary of SFRs15		
	Table 11: Audit Events		

Table	12: Assurance Requirements	28
	13: Key Agreement Mapping	
	14: HMAC Characteristics	
Table	15: Keys	34
	16: Passwords	
Table	17: NDcPP SFR Rationale	37

1 Introduction

1.1 Overview

This Security Target (ST) defines the Samsung 5G gNB AU, DU v19.A Target of Evaluation (TOE) for the purposes of Common Criteria (CC) evaluation.

The 5G gNB AU and DU devices are components of Samsung's 5G Next Generation NodeB (gNB) base station that provides various functions such as signal processing and resource management.

1.2 Identification

Table 1: Evaluation identifiers

Target of Evaluation	Samsung 5G gNB AU, DU v19.A	
	Build: Per Table 5	
Security Target	Samsung 5G gNB AU, DU v19.A Security Target, v1.4	

1.3 Conformance Claims

- This ST supports the following conformance claims:
 - a) CC version 3.1 revision 5
 - b) CC Part 2 extended
 - c) CC Part 3 conformant
 - d) collaborative Protection Profile for Network Devices, v2.2e
 - e) NIAP Technical Decisions per Table 2

Table 2: NIAP Technical Decisions

TD#	Name	Rationale if n/a
TD0527	Updates to Certificate Revocation Testing (FIA_X509_EXT.1)	X509 not claimed.
TD0528	NIT Technical Decision for Missing EAs for FCS_NTP_EXT.1.4	
TD0536	NIT Technical Decision for Update Verification Inconsistency	
TD0537	NIT Technical Decision for Incorrect reference to FCS_TLSC_EXT.2.3	TLSC not claimed.
TD0538	NIT Technical Decision for Outdated link to allowed-with list	

1.4 Terminology

Table 3: Terminology

Term	Definition	
5G	Fifth Generation (mobile network)	
AU	Access Unit	
Cell Site	A Cellular-enabled mobile device site where antennae and electronic communications equipment are placed.	
СС	Common Criteria	
СО	Central Office (i.e. the location where the communication devices are located)	
ConfD	ConfD is an on-device management framework that provides a set of interfaces to manage a device. ConfD implements the full NETCONF specification.	
DU	Digital Unit	
EAL	Evaluation Assurance Level	
gNB	Next Generation NodeB (i.e. 5G base station)	
NDcPP	collaborative Protection Profile for Network Devices	
Netconf	Network Configuration Protocol defined by RFC6241.	
PP	Protection Profile	
RAN	Radio Access Network	
RU	Radio Unit	
TOE	Target of Evaluation	
TSF	TOE Security Functionality	
USM	Unified System Manager - provides management functions within a Samsung 5G gNB system.	
vRAN	Virtualized Radio Access Network	

2 TOE Description

2.1 Type

The TOE is a network device performing an infrastructure role at the edge of next generation 5G cellular networks.

2.2 Usage

2.2.1 Deployment

- The TOE, which may be either a DU device, or an AU device, is deployed within a gNB system at the edge of 5G cellular networks. The AU incorporates a Radio Unit (RU), whilst the DU requires a separate RU.
- The TOE security functionality is focused on the management interfaces of the AU/DU devices, which may be accessed via local console or remotely over an IP network.
- 7 Figure 1 depicts an example deployment of the TOE devices (enclosed in red).

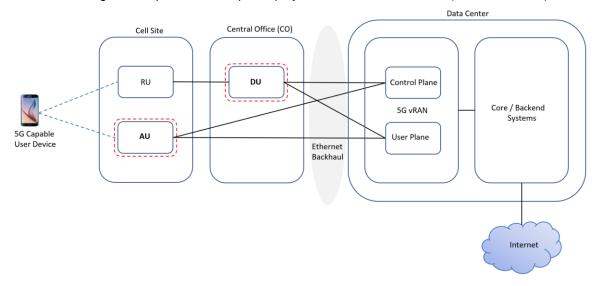


Figure 1: Example TOE deployment

2.2.2 Interfaces

8 The TOE management interfaces are shown in Figure 2 (DU is depicted).

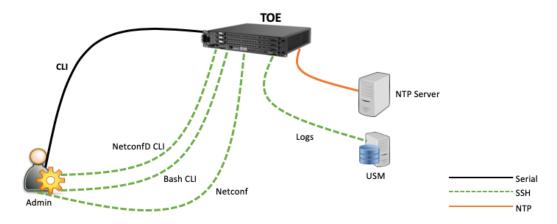


Figure 2: TOE interfaces

- 9 The TOE interfaces are as follows:
 - a) **CLI.** Administrative CLI via direct serial connection.
 - b) Bash CLI. Administrative CLI via SSH.
 - c) NetconfD CLI. ConfD CLI via SSH.
 - d) Netconf API. Administrative API via SSH.
 - e) **Logs.** Forwarding of logs to the Unified System Manager (USM) via SSH (SFTP).
 - f) **NTP.** The TOE synchronizes time via NTP.

2.3 Security Functions / Logical Scope

- The TOE provides the following security functions:
 - a) **Protected Communications.** The TOE protects the integrity and confidentiality of communications as noted in section 2.2.2 above.
 - b) **Secure Administration.** The TOE enables secure management of its security functions, including:
 - i) Administrator authentication with passwords
 - ii) Configurable password policies
 - iii) Role Based Access Control
 - iv) Access banners
 - v) Management of critical security functions and data
 - vi) Protection of cryptographic keys and passwords
 - c) **Trusted Update.** The TOE ensures the authenticity and integrity of software updates through digital signatures.
 - d) System Monitoring. The TOE generates logs of security relevant events. The TOE stores logs locally and is capable of sending log events to a remote audit server.

e) **Self-Test.** The TOE performs a suite of self-tests to ensure the correct operation and enforcement of its security functions.

f) **Cryptographic Operations.** The TOE implements a cryptographic module. Relevant Cryptographic Algorithm Validation Program (CAVP) certificates are shown in Table 4.

Table 4: CAVP Certificates

Algorithm Capability	Certificate
AES-CTR	C1875
ECDSA Key Gen (186-4) ECDSA Sig Gen (186-4) ECDSA Sig Ver (186-4)	
SHA-1, SHA-256, SHA-512	
HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-512	
KAS-ECC	
DRBG	

2.4 Physical Scope

The physical boundary of the TOE includes all software and hardware shown in Table 5. The TOE is delivered via commercial courier.

Table 5: TOE models

Туре	Model	CPU	Software Build	Differences
DU	Cabinet DU	Cavium CN9670	19.A.0 r-02	AU incorporates RU.
AU	AT1K01-A00 (AC)	Cavium CN8370	19.A.0 r-0200	AU comes with different power
	AT1K01-A10 (DC)	Cavium CN8370		supply options.

2.4.1 Guidance Documents

- The TOE includes the following guidance documents (PDF):
 - a) Samsung 5G gNB AU, DU v19.A Common Criteria Guide, v1.3
 - b) Samsung 5G NR DU Command Reference for SVR 19A, v1.0
 - c) Samsung 5G NR AU Command Reference for SVR 19A, v1.0
 - d) Samsung CONFD CLI User Guide, v1.1

2.4.2 Non-TOE Components

The TOE operates with the following components in the environment:

- a) Audit Server (USM). The TOE periodically sends audit events to the USM.
- b) **NTP Server.** The TOE synchronizes time via NTP.

2.4.3 Security Functions not included in the TOE Evaluation

- The evaluation is limited to those security functions identified in section 2.3.
- The 5G related functions are outside of the scope of the security functions of the TOE.

3 Security Problem Definition

The Security Problem Definition is reproduced from section 4 of the NDcPP.

3.1 Threats

Table 6: Threats

Identifier	Description
T.UNAUTHORIZED_ ADMINISTRATOR_ ACCESS	Threat agents may attempt to gain Administrator access to the Network Device by nefarious means such as masquerading as an Administrator to the device, masquerading as the device to an Administrator, replaying an administrative session (in its entirety, or selected portions), or performing man-in-the-middle attacks, which would provide access to the administrative session, or sessions between Network Devices. Successfully gaining Administrator access allows malicious actions that compromise the security functionality of the device and the network on which it resides.
T.WEAK_ CRYPTOGRAPHY	Threat agents may exploit weak cryptographic algorithms or perform a cryptographic exhaust against the key space. Poorly chosen encryption algorithms, modes, and key sizes will allow attackers to compromise the algorithms, or brute force exhaust the key space and give them unauthorized access allowing them to read, manipulate and/or control the traffic with minimal effort.
T.UNTRUSTED_ COMMUNICATION_ CHANNELS	Threat agents may attempt to target Network Devices that do not use standardized secure tunnelling protocols to protect the critical network traffic. Attackers may take advantage of poorly designed protocols or poor key management to successfully perform man-in-the-middle attacks, replay attacks, etc. Successful attacks will result in loss of confidentiality and integrity of the critical network traffic, and potentially could lead to a compromise of the Network Device itself.
T.WEAK_ AUTHENTICATION_ ENDPOINTS	Threat agents may take advantage of secure protocols that use weak methods to authenticate the endpoints – e.g. a shared password that is guessable or transported as plaintext. The consequences are the same as a poorly designed protocol, the attacker could masquerade as the Administrator or another device, and the attacker could insert themselves into the network stream and perform a man-in-the-middle attack. The result is the critical network traffic is exposed and there could be a loss of confidentiality and integrity, and potentially the Network Device itself could be compromised.
T.UPDATE_ COMPROMISE	Threat agents may attempt to provide a compromised update of the software or firmware which undermines the security functionality of the device. Non-validated updates or updates validated using non-secure or weak cryptography leave the update firmware vulnerable to surreptitious alteration.
T.UNDETECTED_ ACTIVITY	Threat agents may attempt to access, change, and/or modify the security functionality of the Network Device without Administrator awareness. This could result in the attacker finding an avenue (e.g., misconfiguration, flaw in the product) to compromise the device and

Identifier	Description
	the Administrator would have no knowledge that the device has been compromised.
T.SECURITY_ FUNCTIONALITY_ COMPROMISE	Threat agents may compromise credentials and device data enabling continued access to the Network Device and its critical data. The compromise of credentials includes replacing existing credentials with an attacker's credentials, modifying existing credentials, or obtaining the Administrator or device credentials for use by the attacker.
T.PASSWORD_ CRACKING	Threat agents may be able to take advantage of weak administrative passwords to gain privileged access to the device. Having privileged access to the device provides the attacker unfettered access to the network traffic, and may allow them to take advantage of any trust relationships with other Network Devices.
T.SECURITY_ FUNCTIONALITY_ FAILURE	An external, unauthorized entity could make use of failed or compromised security functionality and might therefore subsequently use or abuse security functions without prior authentication to access, change or modify device data, critical network traffic or security functionality of the device.

3.2 Assumptions

Table 7: Assumptions

Identifier	Description
A.PHYSICAL_ PROTECTION	The Network Device is assumed to be physically protected in its operational environment and not subject to physical attacks that compromise the security or interfere with the device's physical interconnections and correct operation. This protection is assumed to be sufficient to protect the device and the data it contains. As a result, the cPP does not include any requirements on physical tamper protection or other physical attack mitigations. The cPP does not expect the product to defend against physical access to the device that allows unauthorized entities to extract data, bypass other controls, or otherwise manipulate the device. For vNDs, this assumption applies to the physical platform on which the VM runs.
A.LIMITED_ FUNCTIONALITY	The device is assumed to provide networking functionality as its core function and not provide functionality/services that could be deemed as general purpose computing. For example, the device should not provide a computing platform for general purpose applications (unrelated to networking functionality).
	In the case of vNDs, the VS is considered part of the TOE with only one vND instance for each physical hardware platform. The exception being where components of the distributed TOE run inside more than one virtual machine (VM) on a single VS. There are no other guest VMs on the physical platform providing non-Network Device functionality.

Identifier	Description
A.NO_THRU_ TRAFFIC_ PROTECTION	A standard/generic Network Device does not provide any assurance regarding the protection of traffic that traverses it. The intent is for the Network Device to protect data that originates on or is destined to the device itself, to include administrative data and audit data. Traffic that is traversing the Network Device, destined for another network entity, is not covered by the NDcPP. It is assumed that this protection will be covered by cPPs and PP-Modules for particular types of Network Devices (e.g., firewall).
A.TRUSTED_ ADMINISTRATOR	The Security Administrator(s) for the Network Device are assumed to be trusted and to act in the best interest of security for the organization. This includes appropriately trained, following policy, and adhering to guidance documentation. Administrators are trusted to ensure passwords/credentials have sufficient strength and entropy and to lack malicious intent when administering the device. The Network Device is not expected to be capable of defending against a malicious Administrator that actively works to bypass or compromise the security of the device.
	For TOEs supporting X.509v3 certificate-based authentication, the Security Administrator(s) are expected to fully validate (e.g. offline verification) any CA certificate (root CA certificate or intermediate CA certificate) loaded into the TOE's trust store (aka 'root store', 'trusted CA Key Store', or similar) as a trust anchor prior to use (e.g. offline verification).
A.REGULAR_ UPDATES	The Network Device firmware and software is assumed to be updated by an Administrator on a regular basis in response to the release of product updates due to known vulnerabilities.
A.ADMIN_ CREDENTIALS_ SECURE	The Administrator's credentials (private key) used to access the Network Device are protected by the platform on which they reside.
A.RESIDUAL_ INFORMATION	The Administrator must ensure that there is no unauthorized access possible for sensitive residual information (e.g. cryptographic keys, keying material, PINs, passwords etc.) on networking equipment when the equipment is discarded or removed from its operational environment.

3.3 Organizational Security Policies

Table 8: Organizational Security Policies

Identifier	Description
P.ACCESS_BANNER	The TOE shall display an initial banner describing restrictions of use, legal agreements, or any other appropriate information to which users consent by accessing the TOE.

4 Security Objectives

17 The security objectives are reproduced from section 5 of the NDcPP.

Table 9: Security Objectives for the Operational Environment

Identifier	Description
OE.PHYSICAL	Physical security, commensurate with the value of the TOE and the data it contains, is provided by the environment.
OE.NO_GENERAL_ PURPOSE	There are no general-purpose computing capabilities (e.g., compilers or user applications) available on the TOE, other than those services necessary for the operation, administration and support of the TOE.
OE.NO_THRU_ TRAFFIC_ PROTECTION	The TOE does not provide any protection of traffic that traverses it. It is assumed that protection of this traffic will be covered by other security and assurance measures in the operational environment.
OE.TRUSTED_ADMIN	Security Administrators are trusted to follow and apply all guidance documentation in a trusted manner. For vNDs, this includes the VS Administrator responsible for configuring the VMs that implement ND functionality.
	For TOEs supporting X.509v3 certificate-based authentication, the Security Administrator(s) are assumed to monitor the revocation status of all certificates in the TOE's trust store and to remove any certificate from the TOE's trust store in case such certificate can no longer be trusted.
OE.UPDATES	The TOE firmware and software is updated by an Administrator on a regular basis in response to the release of product updates due to known vulnerabilities.
OE.ADMIN_ CREDENTIALS_ SECURE	The Administrator's credentials (private key) used to access the TOE must be protected on any other platform on which they reside.
OE.RESIDUAL_ INFORMATION	The Security Administrator ensures that there is no unauthorized access possible for sensitive residual information (e.g. cryptographic keys, keying material, PINs, passwords etc.) on networking equipment when the equipment is discarded or removed from its operational environment.

5 Security Requirements

5.1 Conventions

- This document uses the following font conventions to identify the operations defined by the CC:
 - a) **Assignment.** Indicated with italicized text.
 - b) **Refinement.** Indicated with bold text and strikethroughs.
 - c) **Selection.** Indicated with underlined text.
 - d) Assignment within a Selection: Indicated with italicized and underlined text.
 - e) **Iteration.** Indicated by adding a string starting with "/" (e.g. "FCS_COP.1/Hash").
- Note: Operations performed within the Security Target are denoted within brackets []. Operations shown without brackets are reproduced from the NDcPP.

5.2 Extended Components Definition

20 Refer to Annex A: Extended Components Definition.

5.3 Functional Requirements

Table 10: Summary of SFRs

Requirement	Title
FAU_GEN.1	Audit Data Generation
FAU_GEN.2	User Identity Association
FAU_STG_EXT.1	Protected Audit Event Storage
FCS_CKM.1	Cryptographic Key Generation
FCS_CKM.2	Cryptographic Key Establishment
FCS_CKM.4	Cryptographic Key Destruction
FCS_COP.1/DataEncryption	Cryptographic Operation (AES Data Encryption/Decryption)
FCS_COP.1/SigGen	Cryptographic Operation (Signature Generation and Verification)
FCS_COP.1/Hash	Cryptographic Operation (Hash Algorithm)
FCS_COP.1/KeyedHash	Cryptographic Operation (Keyed Hash Algorithm)
FCS_NTP_EXT.1	NTP Protocol
FCS_RBG_EXT.1	Random Bit Generation

Requirement	Title
FCS_SSHC_EXT.1	SSH Client Protocol
FCS_SSHS_EXT.1	SSH Server Protocol
FIA_AFL.1	Authentication Failure Management
FIA_PMG_EXT.1	Password Management
FIA_UIA_EXT.1	User Identification and Authentication
FIA_UAU_EXT.2	Password-based Authentication Mechanism
FIA_UAU.7	Protected Authentication Feedback
FMT_MOF.1/ManualUpdate	Management of Security Functions Behaviour
FMT_MTD.1/CoreData	Management of TSF Data
FMT_MTD.1/CryptoKeys	Management of TSF Data
FMT_SMF.1	Specification of Management Functions
FMT_SMR.2	Restrictions on Security Roles
FPT_SKP_EXT.1	Protection of TSF Data (for reading of all pre-shared, symmetric and private keys)
FPT_APW_EXT.1	Protection of Administrator Passwords
FPT_TST_EXT.1	TSF Testing
FPT_TUD_EXT.1	Trusted Update
FPT_STM_EXT.1	Reliable Time Stamps
FTA_SSL_EXT.1	TSF-initiated Session Locking
FTA_SSL.3	TSF-initiated Termination
FTA_SSL.4	User-initiated Termination
FTA_TAB.1	Default TOE Access Banners
FTP_ITC.1	Inter-TSF trusted channel
FTP_TRP.1/Admin	Trusted Path

5.3.1 Security Audit (FAU)

FAU_GEN.1 Audit Data Generation

FAU_GEN.1.1 The TSF shall be able to generate an audit record of the following auditable events:

- a) Start-up and shutdown of the audit functions;
- b) All auditable events for the not specified level of audit;
- c) All administrative actions comprising:
 - Administrative login and logout (name of user account shall be logged if individual user accounts are required for Administrators).
 - Changes to TSF data related to configuration changes (in addition to the information that a change occurred it shall be logged what has been changed).
 - Generating/import of, changing, or deleting of cryptographic keys (in addition to the action itself a unique key name or key reference shall be logged).
 - Resetting passwords (name of related user account shall be logged).
 - o [no other actions];
- d) Specifically defined auditable events listed in Table 2 Table 11.

Table 11: Audit Events

Requirement	Auditable Events	Additional Audit Record Contents
FAU_GEN.1	None.	None.
FAU_GEN.2	None.	None.
FAU_STG_EXT.1	None.	None.
FCS_CKM.1	None.	None.
FCS_CKM.2	None.	None.
FCS_CKM.4	None.	None.
FCS_COP.1/DataEncryption	None.	None.
FCS_COP.1/SigGen	None.	None.
FCS_COP.1/Hash	None.	None.
FCS_COP.1/KeyedHash	None.	None.
FCS_NTP_EXT.1	Configuration of a new time server Removal of configured time server	Identity if new/removed time server

Requirement	Auditable Events	Additional Audit Record Contents
FCS_RBG_EXT.1	None.	None.
FCS_SSHC_EXT.1	Failure to establish an SSH session	Reason for failure
FCS_SSHS_EXT.1	Failure to establish an SSH session	Reason for failure
FIA_AFL.1	Unsuccessful login attempts limit is met or exceeded.	Origin of the attempt (e.g., IP address).
FIA_PMG_EXT.1	None.	None.
FIA_UIA_EXT.1	All use of identification and authentication mechanism.	Provided user identity, origin of the attempt (e.g., IP address).
FIA_UAU_EXT.2	All use of identification and authentication mechanism.	Origin of the attempt (e.g., IP address).
FIA_UAU.7	None.	None.
FMT_MOF.1/ManualUpdate	Any attempt to initiate a manual update	None.
FMT_MTD.1/CoreData	None.	None.
FMT_MTD.1/CryptoKeys	None.	None.
FMT_SMF.1	All management activities of TSF data.	None.
FMT_SMR.2	None.	None.
FPT_SKP_EXT.1	None.	None.
FPT_APW_EXT.1	None.	None.
FPT_TST_EXT.1	None.	None.
FPT_TUD_EXT.1	Initiation of update; result of the update attempt (success or failure)	None.
FPT_STM_EXT.1	Discontinuous changes to time - either Administrator actuated or changed via an automated process. (Note that no continuous changes to time need to be logged.	For discontinuous changes to time: The old and new values for the time. Origin of the attempt to change time for success and failure (e.g., IP address).

Requirement	Auditable Events	Additional Audit Record Contents
	See also application note on FPT_STM_EXT.1)	
FTA_SSL_EXT.1 (if "terminate the session" is selected)	The termination of a local session by the session locking mechanism.	None.
FTA_SSL.3	The termination of a remote session by the session locking mechanism.	None.
FTA_SSL.4	The termination of an interactive session.	None.
FTA_TAB.1	None.	None.
FTP_ITC.1	Initiation of the trusted channel. Termination of the trusted channel.	Identification of the initiator and target of failed trusted channels establishment attempt.
	Failure of the trusted channel functions.	
FTP_TRP.1/Admin	Initiation of the trusted path. Termination of the trusted path. Failure of the trusted path functions.	None.

FAU_GEN.1.2 The TSF shall record within each audit record at least the following information:

- a) Date and time of the event, type of event, subject identity, and the outcome (success or failure) of the event; and
- b) For each audit event type, based on the auditable event definitions of the functional components included in the cPP/ST, information specified in column three of Table 2 Table 11.

FAU_GEN.2 User Identity Association

FAU_GEN.2.1 For audit events resulting from actions of identified users, the TSF shall be able to associate each auditable event with the identity of the user that caused the event.

FAU_STG_EXT.1 Protected Audit Event Storage

FAU_STG_EXT.1.1 The TSF shall be able to transmit the generated audit data to an external IT entity using a trusted channel according to FTP_ITC.1.

FAU_STG_EXT.1.2 The TSF shall be able to store generated audit data on the TOE itself. In addition [

 The TOE shall consist of a single standalone component that stores audit data locally?

FAU_STG_EXT.1.3 The TSF shall [overwrite previous audit records according to the following rule: [overwrite oldest record first], [no other action]] when the local storage space for audit data is full.

5.3.2 Cryptographic Support (FCS)

FCS_CKM.1 Cryptographic Key Generation

FCS_CKM.1.1 The TSF shall generate **asymmetric** cryptographic keys in accordance with a specified cryptographic key generation algorithm: [

- ECC schemes using "NIST curves" [P-256, P-384, P-521] that meet the following: FIPS PUB 186-4, "Digital Signature Standard (DSS)", Appendix B.4;
- FFC Schemes using 'safe-prime' groups that meet the following:
 "NIST Special Publication 800-56A Revision 3, Recommendation for
 Pair-Wise Key Establishment Schemes Using Discrete Logarithm
 Cryptography" and [RFC 3526]

<u>land specified cryptographic key sizes [assignment: cryptographic key sizes] that meet the following: [assignment: list of standards].</u>

FCS_CKM.2 Cryptographic Key Establishment

FCS_CKM.2.1 The TSF shall **perform** cryptographic **key establishment** in accordance with a specified cryptographic key **establishment** method: [

- Elliptic curve-based key establishment schemes that meet the following: NIST Special Publication 800-56A Revision 2, "Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography";
- FFC Schemes using "safe-prime" groups that meet the following: 'NIST Special Publication 800-56A Revision 3, "Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography" and [RFC 3526];

] that meets the following: [assignment: list of standards].

FCS_CKM.4 Cryptographic Key Destruction

FCS_CKM.4.1 The TSF shall destroy cryptographic keys in accordance with a specified cryptographic key destruction method [

• For plaintext keys in volatile storage, the destruction shall be executed by a [single overwrite consisting of [zeroes]];

• For plaintext keys in non-volatile storage, the destruction shall be executed by the invocation of an interface provided by a part of the TSF that I

 instructs a part of the TSF to destroy the abstraction that represents the key

] that meets the following: No Standard.

FCS_COP.1/DataEncryption Cryptographic Operation (AES Data Encryption)

FCS_COP.1.1/DataEncryption The TSF shall perform encryption/decryption in accordance with a specified cryptographic algorithm AES used in [CTR] mode and cryptographic key sizes [128 bits, 256 bits] that meet the following: AES as specified in ISO 18033-3, [CTR as specified in ISO 10116].

FCS_COP.1/SigGen Cryptographic Operation (Signature Generation and Verification)

FCS_COP.1.1/SigGen The TSF shall perform *cryptographic signature services (generation and verification)* in accordance with a specified cryptographic algorithm [

• Elliptic Curve Digital Signature Algorithm and cryptographic key sizes [256 bits or greater].

] that meet the following: [

 For ECDSA schemes: FIPS PUB 186-4, "Digital Signature Standard (DSS)", Section 6 and Appendix D, Implementing "NIST curves" [P-256, P-384, P-521]; ISO/IEC 14888-3, Section 6.4]

FCS COP.1/Hash Cryptographic Operation (Hash Algorithm)

FCS_COP.1.1/Hash

The TSF shall perform *cryptographic hashing services* in accordance with a specified cryptographic algorithm [SHA-1, SHA-256, SHA-512] and cryptographic key sizes [assignment: cryptographic key sizes] and message digest sizes [160, 256, 512] bits that meet the following: *ISO/IEC 10118-3:2004*.

FCS_COP.1/KeyedHash Cryptographic Operation (Keyed Hash Algorithm)

FCS_COP.1.1/KeyedHash The TSF shall perform keyed-hash message authentication in accordance with a specified cryptographic algorithm [HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-512] and cryptographic key sizes [160, 256, 512] and message digest sizes [160, 256, 512] bits that meet the following: ISO/IEC 9797-2:2011, Section 7 "MAC Algorithm 2".

FCS_NTP_EXT.1 NTP Protocol

FCS_NTP_EXT.1.1 The TSF shall use only the following NTP version(s) [NTP v4 (RFC 5905)].

FCS NTP EXT.1.2 The TSF shall update its system time using [

Authentication using [SHA1] as the message digest algorithm(s)]

FCS_NTP_EXT.1.3 The TSF shall not update NTP timestamp from broadcast and/or multicast addresses.

FCS_NTP_EXT.1.4 The TSF shall support configuration of at least three (3) NTP time

FCS_RBG_EXT.1 Random Bit Generation

sources.

- FCS_RBG_EXT.1.1 The TSF shall perform all deterministic random bit generation services in accordance with ISO/IEC 18031:2011 using [CTR_DRBG (AES)].
- FCS_RBG_EXT.1.2 The deterministic RBG shall be seeded by at least one entropy source that accumulates entropy from [[one] platform-based noise source] with a minimum of [256 bits] of entropy at least equal to the greatest security strength, according to ISO/IEC 18031:2011 Table C.1 "Security Strength Table for Hash Functions", of the keys and hashes that it will generate.

FCS_SSHC_EXT.1 SSH Client Protocol

- FCS_SSHC_EXT.1.1 The TSF shall implement the SSH protocol that complies with: RFC(s) 4251, 4252, 4253, 4254, [4344, 5656, 6668, 8268, 8308 section 3.1, 8332].
- FCS_SSHC_EXT.1.2 The TSF shall ensure that the SSH protocol implementation supports the following authentication methods as described in RFC 4252: public keybased, [password-based].
- FCS_SSHC_EXT.1.3 The TSF shall ensure that, as described in RFC 4253, packets greater than [256 kilo]bytes in an SSH transport connection are dropped.
- FCS_SSHC_EXT.1.4 The TSF shall ensure that the SSH transport implementation uses the following encryption algorithms and rejects all other encryption algorithms: [aes128-ctr, aes256-ctr].
- FCS_SSHC_EXT.1.5 The TSF shall ensure that the SSH public-key based authentication implementation uses [ecdsa-sha2-nistp256, ecdsa-sha2-nistp384, ecdsa-sha2-nistp521] as its public key algorithm(s) and rejects all other public key algorithms.
- FCS_SSHC_EXT.1.6 The TSF shall ensure that the SSH transport implementation uses [hmac-sha1, hmac-sha2-256, hmac-sha2-512] as its data integrity MAC algorithm(s) and rejects all other MAC algorithm(s).
- FCS_SSHC_EXT.1.7 The TSF shall ensure that [diffie-hellman-group14-sha1, ecdh-sha2-nistp256] and [diffie-hellman-group14-sha256, diffie-hellman-group16-sha512, diffie-hellman-group18-sha512, ecdh-sha2-nistp384, ecdh-sha2-nistp521] are the only allowed key exchange methods used for the SSH protocol.
- FCS_SSHC_EXT.1.8 The TSF shall ensure that within SSH connections, the same session keys are used for a threshold of no longer than one hour, and each

encryption key is used to protect no more than one gigabyte of data. After any of the thresholds are reached, a rekey needs to be performed.

FCS_SSHC_EXT.1.9 The TSF shall ensure that the SSH client authenticates the identity of the SSH server using a local database associating each host name with its corresponding public key and [no other methods] as described in RFC 4251 section 4.1.

FCS SSHS EXT.1 SSH Server Protocol

- FCS_SSHS_EXT.1.1 The TSF shall implement the SSH protocol that complies with: RFC(s) 4251, 4252, 4253, 4254, [4344, 5656, 6668, 8268, 8308 section 3.1, 8332].
- FCS_SSHS_EXT.1.2 The TSF shall ensure that the SSH protocol implementation supports the following authentication methods as described in RFC 4252: public keybased, [password based].
- FCS_SSHS_EXT.1.3 The TSF shall ensure that, as described in RFC 4253, packets greater than [256 kilo]bytes in an SSH transport connection are dropped.
- FCS_SSHS_EXT.1.4 The TSF shall ensure that the SSH transport implementation uses the following encryption algorithms and rejects all other encryption algorithms: [aes128-ctr, aes256-ctr].
- FCS_SSHS_EXT.1.5 The TSF shall ensure that the SSH public-key based authentication implementation uses [ecdsa-sha2-nistp256, ecdsa-sha2-nistp384, ecdsa-sha2-nistp521] as its public key algorithm(s) and rejects all other public key algorithms.
- FCS_SSHS_EXT.1.6 The TSF shall ensure that the SSH transport implementation uses [hmac-sha1, hmac-sha2-256, hmac-sha2-512] as its MAC algorithm(s) and rejects all other MAC algorithm(s).
- FCS_SSHS_EXT.1.7 The TSF shall ensure that [diffie-hellman-group14-sha1, ecdh-sha2-nistp256] and [diffie-hellman-group14-sha256, diffie-hellman-group16-sha512, diffie-hellman-group18-sha512, ecdh-sha2-nistp384, ecdh-sha2-nistp521] are the only allowed key exchange methods used for the SSH protocol.
- FCS_SSHS_EXT.1.8 The TSF shall ensure that within SSH connections, the same session keys are used for a threshold of no longer than one hour, and each encryption key is used to protect no more than one gigabyte of data.

 After any of the thresholds are reached, a rekey needs to be performed.

5.3.3 Identification and Authentication (FIA)

FIA_AFL.1 Authentication Failure Management

FIA_AFL.1.1 The TSF shall detect when an Administrator configurable positive integer within [1-1000] unsuccessful authentication attempts occur related to Administrators attempting to authenticate remotely using a password.

FIA_AFL.1.2

When the defined number of unsuccessful authentication attempts has been <u>met</u>, the TSF shall [<u>prevent the offending Administrator from successfully establishing a remote session using any authentication method that involves a password until an Administrator defined time <u>period has elapsed</u>].</u>

FIA_PMG_EXT.1 Password Management

FIA_PMG_EXT.1.1 The TSF shall provide the following password management capabilities for administrative passwords:

- a) Passwords shall be able to be composed of any combination of upper and lower case letters, numbers, and the following special characters: ["!", "@", "#", "\$", "%", "^", "&", "*", "(", ")"];
- b) Minimum password length shall be configurable to between [9] and [15] characters.

FIA_UIA_EXT.1 User Identification and Authentication

FIA_UIA_EXT.1.1 The TSF shall allow the following actions prior to requiring the non-TOE entity to initiate the identification and authentication process:

- Display the warning banner in accordance with FTA TAB.1;
- [[no other actions]]
- FIA_UIA_EXT.1.2 The TSF shall require each administrative user to be successfully identified and authenticated before allowing any other TSF-mediated actions on behalf of that administrative user.

FIA_UAU_EXT.2 Password-based Authentication Mechanism

FIA_UAU_EXT.2.1 The TSF shall provide a local [password-based, SSH public key-based] authentication mechanism to perform local administrative user authentication.

FIA_UAU.7 Protected Authentication Feedback

FIA_UAU.7.1 The TSF shall provide only *obscured feedback* to the administrative user while the authentication is in progress **at the local console**.

5.3.4 Security Management (FMT)

FMT MOF.1/ManualUpdate Management of security functions behaviour

FMT_MOF.1.1/ManualUpdate The TSF shall restrict the ability to <u>enable</u> the functions to <u>perform manual updates to Security Administrators</u>.

FMT MTD.1/CoreData Management of TSF Data

FMT_MTD.1.1/CoreData The TSF shall restrict the ability to <u>manage</u> the <u>TSF data to Security Administrators</u>.

FMT_MTD.1/CryptoKeys Management of TSF data

FMT_MTD.1.1/CryptoKeys The TSF shall restrict the ability to <u>manage</u> the <u>cryptographic</u> keys to Security Administrators.

FMT_SMF.1 Specification of Management Functions

FMT_SMF.1.1 The TSF shall be capable of performing the following management functions:

- Ability to administer the TOE locally and remotely;
- Ability to configure the access banner;
- Ability to configure the session inactivity time before session termination or locking;
- Ability to update the TOE, and to verify the updates using [digital signature] capability prior to installing those updates;
- Ability to configure the authentication failure parameters for FIA_AFL.1;
- [
- o Ability to manage the cryptographic keys;
- Ability to configure the cryptographic functionality;
- Ability to configure NTP;]

FMT_SMR.2 Restrictions on Security Roles

FMT SMR.2.1 The TSF shall maintain the roles:

Security Administrator.

FMT_SMR.2.2 The TSF shall be able to associate users with roles.

FMT_SMR.2.3 The TSF shall ensure that the conditions

- The Security Administrator role shall be able to administer the TOE locally;
- The Security Administrator role shall be able to administer the TOE remotely

are satisfied.

5.3.5 Protection of the TSF (FPT)

FPT_SKP_EXT.1 Protection of TSF Data (for reading of all pre-shared, symmetric and private keys)

FPT_SKP_EXT.1.1 The TSF shall prevent reading of all pre-shared keys, symmetric keys, and private keys.

FPT_APW_EXT.1 Protection of Administrator Passwords

FPT_APW_EXT.1.1 The TSF shall store administrative passwords in non-plaintext form.

FPT_APW_EXT.1.2 The TSF shall prevent the reading of plaintext administrative passwords.FPT_TST_EXT.1 TSF testing

- FPT_TST_EXT.1.1 The TSF shall run a suite of the following self-tests [during initial start-up (on power on)] to demonstrate the correct operation of the TSF: [
 - BIOS tests
 - Boot loader image verification
 - Cryptographic module tests].

FPT_TUD_EXT.1 Trusted update

- FPT_TUD_EXT.1.1 The TSF shall provide Security Administrators the ability to query the currently executing version of the TOE firmware/software and [no other TOE firmware/software version].
- FPT_TUD_EXT.1.2 The TSF shall provide Security Administrators the ability to manually initiate updates to TOE firmware/software and [no other update mechanism].
- FPT_TUD_EXT.1.3 The TSF shall provide means to authenticate firmware/software updates to the TOE using a [digital signature] prior to installing those updates.

FPT_STM_EXT.1 Reliable Time Stamps

- FPT_STM_EXT.1.1 The TSF shall be able to provide reliable time stamps for its own use.
- FPT_STM_EXT.1.2 The TSF shall [synchronize time with an NTP server].

5.3.6 TOE Access (FTA)

FTA_SSL_EXT.1 TSF-initiated Session Locking

- FTA_SSL_EXT.1.1 The TSF shall, for local interactive sessions, [
 - terminate the session]

after a Security Administrator-specified time period of inactivity.

FTA SSL.3 TSF-initiated Termination

FTA_SSL.3.1 The TSF shall terminate **a remote** interactive session after a Security Administrator-configurable time interval of session inactivity.

FTA_SSL.4 User-initiated Termination

FTA_SSL.4.1 Refinement: The TSF shall allow **Administrator**-initiated termination of the **Administrator's** own interactive session.

FTA_TAB.1 Default TOE Access Banners

FTA_TAB.1.1 Before establishing an administrative user session the TSF shall

display a Security Administrator-specified advisory notice and

consent warning message regarding use of the TOE.

5.3.7 Trusted path/channels (FTP)

FTP ITC.1 Inter-TSF trusted channel

FTP_ITC.1.1 The TSF shall be capable of using [SSH] to provide a trusted

communication channel between itself and authorized IT entities supporting the following capabilities: audit server, [no other

<u>capabilities</u>] that is logically distinct from other communication channels and provides assured identification of its end points and protection of the channel data from disclosure and detection of modification of the

channel data.

FTP_ITC.1.2 The TSF shall permit the TSF or the authorized IT entities to initiate

communication via the trusted channel.

FTP_ITC.1.3 The TSF shall initiate communication via the trusted channel for [audit

server].

FTP_TRP.1 /Admin Trusted Path

FTP_TRP.1.1/Admin The TSF shall **be capable of using [SSH] to** provide a communication

path between itself and **authorized** <u>remote</u> **Administrators** that is logically distinct from other communication paths and provides assured identification of its end points and protection of the communicated data from **disclosure** and **provides detection of modification of the**

channel data.

FTP TRP.1.2 /Admin The TSF shall permit remote **Administrators** to initiate communication

via the trusted path.

FTP_TRP.1.3 /Admin The TSF shall require the use of the trusted path for initial <u>Administrator</u>

authentication and all remote administration actions.

5.4 Assurance Requirements

The TOE security assurance requirements are summarized in Table 12.

Table 12: Assurance Requirements

Assurance Class	Components	Description
Security Target Evaluation	ASE_CCL.1	Conformance Claims
Evaluation	ASE_ECD.1	Extended Components Definition
	ASE_INT.1	ST Introduction
	ASE_OBJ.1	Security Objectives for the operational environment
	ASE_REQ.1	Stated Security Requirements
	ASE_SPD.1	Security Problem Definition
	ASE_TSS.1	TOE Summary Specification
Development	ADV_FSP.1	Basic Functional Specification
Guidance Documents	AGD_OPE.1	Operational User Guidance
	AGD_PRE.1	Preparative User Guidance
Life Cycle Support	ALC_CMC.1	Labelling of the TOE
	ALC_CMS.1	TOE CM Coverage
Tests	ATE_IND.1	Independent Testing - conformance
Vulnerability Assessment	AVA_VAN.1	Vulnerability Analysis

- In accordance with section 7.1 of the NDcPP, the following refinement is made to ASE:
 - a) ASE_TSS.1.1C Refinement: The TOE summary specification shall describe how the TOE meets each SFR. In the case of entropy analysis, the TSS is used in conjunction with required supplementary information on Entropy.

6 TOE Summary Specification

The following describes how the TOE fulfils each SFR included in section 5.3.

6.1 Security Audit

6.1.1 FAU GEN.1

- The TOE generates the audit records specified at FAU_GEN.1 containing fields that include the timestamp, IP address (if applicable), action, user (if applicable) and a contextual message indicating success or failure of the action.
- The following information is logged as a result of the Security Administrator generating/importing or deleting cryptographic keys:
 - a) **Generate SSH key-pair**. Action and key reference.

6.1.2 FAU GEN.2

The TOE includes the user identity in audit events resulting from actions of identified users.

6.1.3 FAU STG EXT.1

- Log files are transferred via SFTP (see FCS_SSHC_EXT.1) to the USM periodically at 30 minutes after the hour, every hour.
- Logs are stored locally in rotating log files as follows (oldest records are overwritten first):
 - a) **/var/log log files.** Up to 1MB of data is kept in each of the log files before they are rotated. Up to one previous log file is kept of each log file and one live log.
 - b) **auditd log file.** up to 8MB of log data is kept until they are rotated. A total of 5 previous logs are kept (plus the live log).
- Only authorized administrators may view audit records and no capability to modify the audit records is provided.

6.2 Cryptographic Support

6.2.1 FCS CKM.1

- The TOE supports key generation for the following asymmetric schemes:
 - a) ECC P-256/P-384/P-521. Used in SSH authentication and key exchange.
 - b) **FFC Safe Primes.** Used in SSH key exchange.

6.2.2 FCS CKM.2

- The TOE supports the following key establishment schemes:
 - a) **ECC schemes.** Used in SSH key exchange. TOE is both sender and receiver.
 - b) **FFC schemes using safe primes.** Used in SSH key exchange. TOE is both sender and receiver. The following Diffie Helman groups are supported:
 - i) Group 14 per RFC 3526 section 3
 - ii) Group 16 per RFC 3526 section 5

iii) Group 18 per RFC 3526 section 7

Table 13 below identifies the scheme being used by each service.

Table 13: Key Agreement Mapping

Scheme	SFR	Service
ECC	FCS_SSHS_EXT.1 Administration	
	FCS_SSHC_EXT.1	Audit Server
FFC Safe Primes	FCS_SSHS_EXT.1	Administration
	FCS_SSHC_EXT.1	Audit Server

6.2.3 FCS CKM.4

Table 15 shows the origin, storage location and destruction details for cryptographic keys. Unless otherwise stated, the keys are generated by the TOE.

6.2.4 FCS_COP.1/DataEncryption

- The TOE provides symmetric encryption and decryption capabilities using 128 and 256 bit AES in CTR mode. AES is implemented in SSH.
- The relevant NIST CAVP certificate numbers are listed Table 4.

6.2.5 FCS_COP.1/SigGen

- The TOE provides cryptographic signature generation and verification services using:
 - Elliptic Curve Digital Signature Algorithm with NIST curves P-256, P-384 and P-521
- The ECDSA signature verification services are used in for the SSH protocol and TOE firmware integrity checks.
- The relevant NIST CAVP certificate numbers are listed in Table 4.

6.2.6 FCS_COP.1/Hash

- The TOE provides cryptographic hashing services using SHA-1, SHA-256, and SHA-512.
- SHA is implemented in the following parts of the TSF:
 - a) SSH;
 - b) NTP;
 - c) Digital signature verification as part of trusted update validation; and
 - d) Hashing of passwords in non-volatile storage.
- The relevant NIST CAVP certificate numbers are listed in Table 4.

6.2.7 FCS_COP.1/KeyedHash

The TOE provides keyed-hashing message authentication services using HMAC-SHA-1, HMAC-SHA-256, and HMAC-SHA-512.

- 43 HMAC is implemented in SSH.
- The characteristics of the HMACs used in the TOE are given in Table 14.

Table 14: HMAC Characteristics

Algorithm	Block Size	Key Size	Digest Size
HMAC-SHA-1	512 bits	160 bits	160 bits
HMAC-SHA-256	512 bits	256 bits	256 bits
HMAC-SHA-512	1024 bits	512 bits	512 bits

The relevant NIST CAVP certificate numbers are listed in Table 4.

6.2.8 FCS_NTP_EXT.1

The TOE supports NTPv4 using SHA-1 authentication. The TOE allows configuration of up to 3 NTP servers.

6.2.9 FCS RBG EXT.1

- The TOE contains a CTR_DRBG that is seeded from a CPU provided entropy source. Entropy from the noise is conditioned and used to seed the DRBG with 256 bits of full entropy.
- 48 Additional detail is provided the proprietary Entropy Description.

6.2.10 FCS SSHC EXT.1

- 49 The TOE implements an SSH client for SFTP transmission of audit logs to the USM.
- The TOE implements SSH in compliance with RFCs 4251, 4252, 4253, 4254, 4344, 5656, 6668, 8268, 8308 section 3.1, and 8332.
- The TOE SSH client supports passwords and public key authentication using ecdsa-sha2-nistp256, ecdsa-sha2-nistp384, ecdsa-sha2-nistp521.
- The TOE examines the size of each received SSH packet. If the packet is greater than 256KB, it is automatically dropped.
- 53 The TOE utilizes AES-CTR-128 and AES-CTR-256 for SSH encryption.
- The TOE provides data integrity for SSH connections via hmac-sha1, hmac-sha2-256, hmac-sha2-512.
- The TOE supports diffie-hellman-group14-sha1, ecdh-sha2-nistp256, diffie-hellman-group14-sha512, diffie-hellman-group18-sha512, ecdh-sha2-nistp384, ecdh-sha2-nistp52 for SSH key exchanges.
- The TOE will re-key SSH connections after 1 hour or after an aggregate of 1 gig of data has been exchanged (whichever occurs first).
- The TOE authenticates the identity of the SSH server using a local database associating each host name with its corresponding public key.

6.2.11 FCS SSHS EXT.1

The TOE implements SSH in compliance with RFCs 4251, 4252, 4253, 4254, 4344, 5656, 6668, 8268, 8308 section 3.1 and 8332.

The TOE supports password-based or public key authentication (ecdsa-sha2-nistp256, ecdsa-sha2-nistp384, ecdsa-sha2-nistp521). In the case of public keys, the TOE authenticates the identity of the SSH client using a local database associating authorized hosts with its corresponding public key.

- The TOE examines the size of each received SSH packet. If the packet is greater than 256 KB, it is automatically dropped.
- The TOE utilises AES-CTR-128 and AES-CTR-256 for SSH encryption.
- The TOE provides data integrity for SSH connections via HMAC-SHA1, HMAC-SHA2-256 and HMAC-SHA2-512.
- The TOE supports diffie-hellman-group14-sha1, ecdh-sha2-nistp256, diffie-hellman-group14-sha512, diffie-hellman-group18-sha512, ecdh-sha2-nistp384 and ecdh-sha2-nistp52 for SSH key exchanges.
- The TOE will re-key SSH connections after 1 hour of after an aggregate of 1 gig of data has been exchanged (whichever occurs first).

6.3 Identification and Authentication

6.3.1 FIA_PMG_EXT.1

- The TOE supports the local definition of users with corresponding passwords. The passwords can be composed of any combination of upper and lower case letters, numbers, and special characters "!", "@", "#", "\$", "%", "%", "%", "*", "(", ")".
- The minimum password length is settable by the Administrator and can range from 9 to 15 characters.

6.3.2 FIA UIA EXT.1

- The TOE requires all users to be successfully identified and authenticated. The TOE warning banner is displayed prior to authentication. No other actions may be performed on behalf of the administrative user prior to authentication.
- 68 Administrative access to the TOE is facilitated through several interfaces:
 - a) CLI. Administrative CLI via direct serial connection.
 - b) Bash CLI. Administrative CLI via SSH.
 - c) NetconfD CLI. ConfD CLI via SSH.
 - d) **Netconf API.** Administrative API via SSH.

6.3.3 FIA UAU EXT.2

- Regardless of the interface at which the administrator interacts, the TOE prompts the user for a credential. Only after the administrative user presents the correct authentication credentials will they be granted access to the TOE administrative functionality. No TOE administrative access is permitted until an administrator is successfully identified and authenticated.
- The TOE provides a local password-based authentication mechanism and also supports SSH public key authentication.
- 71 The process for authentication is the same for administrative access whether administration is occurring via direct connection or remotely. At initial login, the administrative user is prompted to provide a username. After the user provides the username, the user is prompted to provide the administrative credential associated

with the user account (e.g. password or SSH public/private key response). The TOE then either grants administrative access (if the combination of username and credential is correct) or indicates that the login was unsuccessful. The TOE does not provide a reason for failure in the cases of a login failure.

6.3.4 FIA_UAU.7

For all authentication at the local CLI the TOE provides no feedback when the administrative password is entered so that the password is obscured.

6.3.5 FIA AFL.1

- 73 The TOE is capable of tracking authentication failures of remote administrators.
- When a user account has sequentially failed authentication the configured number of times the account will be locked for a Security Administrator defined time period.
- The local console does not implement the lockout mechanism.

6.4 Security Management

6.4.1 FMT_MOF.1/ManualUpdate

The TOE restricts the ability to perform software updates to Security Administrators.

6.4.2 FMT MTD.1/CoreData

Users are required to login before being provided with access to any administrative functions.

6.4.3 FMT SMR.2

- 78 The following user accounts are available, which are all Security Administrators:
 - a) Iteuser. This account is used to access the CLI and Bash CLI.
 - b) nrcliuser. This account is used to access the NetconfD CLI and Nedtconf API.
- 79 Management of TSF data is restricted to Security Administrators.

6.4.4 FMT_MTD.1/CryptoKeys

The TOE restricts the ability to generate and delete SSH keys to Security Administrators.

6.4.5 FMT_SMF.1

- The TOE provides the following management capabilities:
 - a) Ability to administer the TOE locally (serial) and remotely (SSH)
 - b) Ability to configure the access banner via CLI or Bash CLI
 - c) Ability to configure the session inactivity time before session termination
 - i) The CLI / Bash CLI timeout value is set via the CLI or Bash CLI
 - ii) The NetconfD CLI / Netconf API timeout value is via the NetconfD CLI or Netconf API
 - d) Ability to update the TOE and to verify the updates via CLI or Bash CLI

- e) Ability to configure the authentication failure parameters via CLI or Bash CLI
- f) Ability to manage the cryptographic keys (SSH keys) via CLI or Bash CLI
- g) Ability to configure the cryptographic functionality (SSH configuration) via CLI or Bash CLI
- h) Ability to configure NTP via the NetconfD CLI or Netconf API

6.5 Protection of the TSF

6.5.1 FPT SKP EXT.1

Keys are protected as described in Table 15. Plaintext keys stored in flash (non-volatile memory) are protected via Unix permissions and cannot be viewed by TOE users.

Algorithm Zeroization Key **Storage** SSH Private **ECDSA** Flash -Keys are destroyed when generating new Keys plaintext keys by deleting the previous file and creating a new file. Initiated via CLI command by the Security Administrator. OpenSSL ensures that keys (including re-SSH Ephemeral AES / DH / RAM -ECDH plaintext keyed keys) are overwritten with zeroes Keys when no longer required. NTP Kev n/a Flash -Keys are destroyed when generating new keys by deleting the previous file and plaintext (User inputted creating a new file. Initiated via CLI 40 digit command by the Security Administrator. hexadecimal)

Table 15: Keys

6.5.2 FPT APW EXT.1

Passwords are protected as describe in Table 16.

Table 16: Passwords

Key/Password	Generation/ Algorithm	Storage
Locally stored administrator passwords	User generated	Flash - SHA-512 hash

6.5.3 FPT TST EXT.1

At startup, the TOE undergoes the following tests:

a) Central Processing Unit (CPU) and Memory Basic Input/Output System (BIOS) self-tests – CPU and memory are initialized by exercising a set of known answer tests and the BIOS is compared against a known checksum of the image. The memory is zeroized and then a random pattern is written to and read from the memory.

b) Boot loader image verification – the boot loader compares the image of the TOE to a known checksum of the image prior to booting.

c) OpenSSL cryptographic module self-tests

These tests ensure the correct operation of the cryptographic functionality of the TOE, the CPU and BIOS and verify that the correct TOE image is being used. The cryptographic functionality will not be available if the tests fail, and any operation of the TOE supported by this functionality will not be available. If the CPU, or BIOS tests fail, the device will not complete the boot up operation. If the boot loader image verification fails, the boot up operation will fail. When the device completes the boot up operation, this is evidence that the self-tests have passed, and that the TOE, and the cryptographic functions are operating correctly.

6.5.4 **FPT_TUD_EXT.1**

85

- The current firmware version may be queried using any administrative interface.
- The Security Administrator manually initiates TOE updates from the Bash CLI. TOE update files must first be copied to the TOE via SCP.
- TOE update files are digitally signed (ECDSA) and the signature is verified using a hardcoded public key prior to installation of the update. If verification fails, the update is aborted, and an error message is displayed.

6.5.5 FPT STM EXT.1

- The TOE makes use of NTP to maintain date and time.
- The TOE makes use of time for the following:
 - a) Audit record timestamps
 - b) Session timeouts (lockout enforcement)

6.6 TOE Access

6.6.1 FTA SSL EXT.1

The Security Administrator may configure the TOE to terminate an inactive local interactive session following a specified period of time. This is applicable to the local CLI.

6.6.2 FTA SSL.3

The Security Administrator may configure the TOE to terminate an inactive remote interactive session following a specified period of time. This is applicable to the Bash CLI, NetcongfD CLI and Netconf API.

6.6.3 FTA_SSL.4

Administrative users may terminate their own sessions at any time by issuing the exit command at any CLI or a close-session message at the NetConf API.

6.6.4 FTA_TAB.1

The TOE displays an administrator configurable message to users prior to login at the CLI, Bash CLI, NetcongfD CLI and Netconf API.

6.7 Trusted Path/Channels

6.7.1 FTP_ITC.1

96

The TOE supports secure communication with the following IT entities:

a) Audit server per FCS_SSHC_EXT.1

6.7.2 FTP_TRP.1/Admin

The TOE provides the following trusted paths for remote administration:

- a) Bash CLI. Administrative CLI via SSH per FCS_SSHS_EXT.1.
- b) **NetconfD CLI.** ConfD CLI via SSH per FCS_SSHS_EXT.1.
- c) Netconf API. Administrative API via SSH per FCS_SSHS_EXT.1.

7 Rationale

7.1 Conformance Claim Rationale

The following rationale is presented with regard to the PP conformance claims:

- a) **TOE type.** As identified in section 2.1, the TOE is network device, consistent with the NDcPP.
- b) **Security problem definition.** As shown in section 3, the threats, OSPs and assumptions are reproduced directly from the NDcPP.
- c) **Security objectives.** As shown in section 4, the security objectives are reproduced directly from the NDcPP.
- d) Security requirements. As shown in section 5, the security requirements are reproduced directly from the NDcPP. No additional requirements have been specified.

7.2 Security Objectives Rationale

All security objectives are drawn directly from the NDcPP.

7.3 Security Requirements Rationale

All security requirements are drawn directly from the NDcPP. Table 17 presents a mapping between threats and SFRs as presented in the NDcPP.

Table 17: NDcPP SFR Rationale

Identifier	SFR Rationale
T.UNAUTHORIZED_ADMINIS TRATOR_ACCESS	The Administrator role is defined in FMT_SMR.2 and the relevant administration capabilities are defined in FMT_SMF.1 and FMT_MTD.1/CoreData, with optional additional capabilities in FMT_MOF.1/Services and FMT_MOF.1/Functions
	 The actions allowed before authentication of an Administrator are constrained by FIA_UIA_EXT.1, and include the advisory notice and consent warning message displayed according to FTA_TAB.1
	 The requirement for the Administrator authentication process is described in FIA_UAU_EXT.2
	 Locking of Administrator sessions is ensured by FTA_SSL_EXT.1 (for local sessions), FTA_SSL.3 (for remote sessions), and FTA_SSL.4 (for all interactive sessions)
	 The secure channel used for remote Administrator connections is specified in FTP_TRP.1/Admin
	(Malicious actions carried out from an Administrator session are separately addressed by T.UNDETECTED_ACTIVITY)

Identifier	SFR Rationale
	(Protection of the Administrator credentials is separately addressed by T.PASSWORD_CRACKING).
T.WEAK_CRYPTOGRAPHY	 Requirements for key generation and key distribution are set in FCS_CKM.1 and FCS_CKM.2 respectively Requirements for use of cryptographic schemes are set in FCS_COP.1/DataEncryption, FCS_COP.1/SigGen, FCS_COP.1/Hash, and FCS_COP.1/KeyedHash Requirements for random bit generation to support key generation and secure protocols (see SFRs resulting from T.UNTRUSTED_COMMUNICATION_CHANNELS) are set in FCS_RBG_EXT.1 Management of cryptographic functions is specified in FMT_SMF.1
T.UNTRUSTED_COMMUNI CATION_CHANNELS	The general use of secure protocols for identified communication channels is described at the top level in FTP_ITC.1 and FTP_TRP.1/Admin; for distributed TOEs the requirements for inter-component communications are addressed by the requirements in FPT_ITT.1
	Requirements for the use of secure communication protocols are set for all the allowed protocols in FCS_DTLSC_EXT.1, FCS_DTLSC_EXT.2, FCS_DTLSS_EXT.1, FCS_DTLSS_EXT.2, FCS_HTTPS_EXT.1, FCS_IPSEC_EXT.1, FCS_SSHC_EXT.1, FCS_SSHS_EXT.1, FCS_TLSC_EXT.1, FCS_TLSC_EXT.1, FCS_TLSC_EXT.2, FCS_TLSS_EXT.1, FCS_TLSS_EXT.2
	Optional and selection-based requirements for use of public key certificates to support secure protocols are defined in FIA_X509_EXT.1, FIA_X509_EXT.2, FIA_X509_EXT.3
T.WEAK_AUTHENTICATIO N_ENDPOINTS	The use of appropriate secure protocols to provide authentication of endpoints (as in the SFRs addressing T.UNTRUSTED_COMMUNICATION_CHANNELS) are ensured by the requirements in FTP_ITC.1 and FTP_TRP.1/Admin; for distributed TOEs the authentication requirements for endpoints in inter-component communications are addressed by the requirements in FPT_ITT.1
	Additional possible special cases of secure authentication during registration of distributed TOE components are addressed by FCO_CPC_EXT.1 and FTP_TRP.1/Join.
T.UPDATE_COMPROMISE	Requirements for protection of updates are set in FPT_TUD_EXT.1
	Additional optional use of certificate-based protection of signatures can be specified using FPT_TUD_EXT.2, supported by the X.509 certificate processing requirements in FIA_X509_EXT.1, FIA_X509_EXT.2 and FIA_X509_EXT.3

Identifier	SFR Rationale
	Requirements for management of updates are defined in FMT_SMF.1 and (for manual updates) in FMT_MOF.1/ManualUpdate, with optional requirements for automatic updates in FMT_MOF.1/AutoUpdate
T.UNDETECTED_ACTIVITY	Requirements for basic auditing capabilities are specified in FAU_GEN.1 and FAU_GEN.2, with timestamps provided according to FPT_STM_EXT.1 and if applicable, protection of NTP channels in FCS_NTP_EXT.1
	Requirements for protecting audit records stored on the TOE are specified in FAU_STG.1
	Requirements for secure transmission of local audit records to an external IT entity via a secure channel are specified in FAU_STG_EXT.1
	Optional additional requirements for dealing with potential loss of locally stored audit records are specified in FAU_STG_EXT.2/LocSpace, and FAU_STG_EXT.3/LocSpace
	 If (optionally) configuration of the audit functionality is provided by the TOE then this is specified in FMT_SMF.1, and confining this functionality to Security Administrators is required by FMT_MOF.1/Functions.
T.SECURITY_FUNCTIONAL ITY_COMPROMISE	Protection of secret/private keys against compromise is specified in FPT_SKP_EXT.1
	Secure destruction of keys is specified in FCS_CKM.4
	 If (optionally) management of keys is provided by the TOE then this is specified in FMT_SMF.1, and confining this functionality to Security Administrators is required by FMT_MTD.1/CryptoKeys
	(Protection of passwords is separately covered under T.PASSWORD_CRACKING)
T.PASSWORD_CRACKING	Requirements for password lengths and available characters are set in FIA_PMG_EXT.1
	 Protection of password entry by providing only obscured feedback is specified in FIA_UAU.7
	 Actions on reaching a threshold number of consecutive password failures are specified in FIA_AFL.1
	 Requirements for secure storage of passwords are set in FPT_APW_EXT.1.
T.SECURITY_FUNCTIONAL ITY_FAILURE	Requirements for running self-test(s) are defined in FPT_TST_EXT.1
P.ACCESS_BANNER	An advisory notice and consent warning message is required to be displayed by FTA_TAB.1

Annex A: Extended Components Definition

See appended PDF extract of NDcPP extended components definition.